The realization space is [1 0 1 0 1 0 x1 2*x1^3 + x1^2*x2^2 + 3*x1^2*x2 - 3*x1^2 + x1*x2^3 + 2*x1*x2^2 - 6*x1*x2 + 3*x1 + x2^3 - 3*x2^2 + 3*x2 - 1 x1^2*x2 + x1*x2^2 1 x1 + x2 - 1] [0 1 1 0 0 1 x1 2*x1^4 + 9*x1^3 + x1^2*x2^3 + 14*x1^2*x2 - 15*x1^2 + x1*x2^4 + 3*x1*x2^3 + 7*x1*x2^2 - 28*x1*x2 + 17*x1 + x2^4 + 2*x2^3 - 13*x2^2 + 16*x2 - 6 2*x1^3 + x1^2*x2^2 + 3*x1^2*x2 - 3*x1^2 + x1*x2^3 + x1*x2^2 - 5*x1*x2 + 3*x1 - 2*x2^2 + 3*x2 - 1 x1 x1^2*x2 + x1*x2^2 - x1*x2 - x2^2 + x2] [0 0 0 1 1 -1 x1 + x2 - 1 2*x1^4 + 11*x1^3 + 2*x1^2*x2^3 + 17*x1^2*x2 - 18*x1^2 + 3*x1*x2^4 + 2*x1*x2^3 + 8*x1*x2^2 - 33*x1*x2 + 20*x1 + x2^5 + 2*x2^3 - 15*x2^2 + 19*x2 - 7 x1^2*x2 + 2*x1*x2^2 - x1*x2 + x2^3 - x2^2 x2 x1*x2 + x2^2 - x2] in the multivariate polynomial ring in 2 variables over ZZ within the vanishing set of the ideal Ideal with 2 generators avoiding the zero loci of the polynomials RingElem[x1 - 1, x2 - 1, x1 + x2, x2, x1^2 + x1*x2 - x1 - x2 + 1, x1, x1^2*x2 + x1*x2^2 - x1 - x2 + 1, x1^2*x2 + x1*x2^2 + x1*x2 - 2*x1 + x2^2 - 2*x2 + 1, x1*x2 + x2^2 - 1, x1 + x2 - 1, x1^2 - x1 - x2 + 1, x1^3 + x1^2*x2 - 2*x1^2 - 3*x1*x2 + 2*x1 - x2^2 + 2*x2 - 1, x1^3 + x1^2*x2 - x1^2 - 2*x1*x2 + 2*x1 - x2^2 + 2*x2 - 1, x1^3 + x1^2*x2 - x1^2 - x1*x2 + x1 + x2 - 1, x1^3*x2 - x1^3 + x1^2*x2^2 - 2*x1^2*x2 + 2*x1^2 - x1*x2^2 + 3*x1*x2 - 2*x1 + x2^2 - 2*x2 + 1, 2*x1 + x2 - 1]